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Batch delivery scheduling with simple
linear deterioration on a single

machine1

Juan Zou2,3

Abstract. Several single machine scheduling problems are solved, in which n independent
jobs are available simultaneously and delivered to the customer together upon the completion time
of the last job in the batch. The processing time of a job is a simple linear increasing function
of its starting time. The objective is to minimize the scheduling cost plus the delivery cost, using
several classical scheduling objectives. The several problems are to determine the optimal number
of batches, the assignment of jobs to the batches and the job processing sequence so that the sum of
cost is minimized. For each problem, we either derive an efficient dynamic programming algorithm
that minimizes total cost, or provide some basic properties of the intractable problem.
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1. Introduction

Batch scheduling problems, as combinations of sequencing and partitioning prob-
lems, have attracted much attention of researchers in recent years. Motivation for
the batch delivery problems comes from the assembly stage in manufacturing of
very large-scale integrated circuits. In this stage, chips of various types are attached
and placed on a circuit board by a pick and insertion machine. Each circuit board
represents a job, upon completion, it is loaded onto a pallet. Intermittently, pal-
lets are moved to the soldering machine and then to the test area. A set of circuit
boards loaded on a pallet corresponds to a batch. In practice, however, the num-
ber of pallets in use is a cost factor which has to be taken into account. Then we
obtain a situation which can be modelled as a batch delivery problem formulated.
Batch delivery problems were first introduced by Cheng and Kahlbacher [1], who
studied single machine batch delivery scheduling to minimize the sum of the total
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weighted earliness and delivery costs. They showed that the problem is NP-complete
in the ordinary sense, and the equal weight case is solved in polynomial time. Ah-
madizar and Farhadi [2] studied the single machine scheduling problem in which
jobs are released in different points in time but delivered to customers in batches.
A mathematical formulation is developed and dominance properties providing nec-
essary conditions for any solution to be optimal are established. Hall and Potts [3]
analyzed the complexity of some single machine scheduling problems with deliveries.
Yin, Ye and Zhang [4] considered the problem of scheduling nnon-resumable and si-
multaneously available jobs on a single machine, the jobs are delivered in batches to
the customers. The objective is to minimize the sum of total flow time and batch
delivery cost. They proved the problem is NP-hard and developed two fully polyno-
mial time approximation schemes. Mor and Mosheiov [5] studied a single machine
batch scheduling problem with unit time jobs and an optional maintenance activity,
the objective function is minimum total flowtime. They proposed a simple rounding
procedure that guarantees an integer solution. Selvarajah and Zhang [6] considered
supply chain scheduling problem, the objective is to minimize the sum of weighted
flow time and the batch delivery costs. They analyzed some polynomially solvable
problems and developed a heuristic algorithm for the general problem. Rostami
et al. [7] proposed a single-machine scheduling problem that involves minimizing
the maximum tardiness plus delivery costs in a batched delivery system with release
times. They developed a MIP model and proposed a B&B algorithm with a heuristic
upper bound and the LP relaxation technique was developed.

In the classical scheduling theory, the processing times of jobs are considered to
be constant and independent of their starting times. However, this assumption is
not appropriate for the modelling of many modern industrial processes where the
processing time of a job may deteriorate while waiting to be processed. Machine
scheduling problems with time dependent processing times have received increasing
attention in the recent years. This model reflects some real-life situations in which
the expected processing time of a task increases/decreased linearly with starting
time. In fact, such situations can be found in maintenance scheduling, steel pro-
duction, cleaning assignment, fire fighting, resource allocation, where any delay in
processing a job may increase the time necessary for its completion. Scheduling dete-
riorating jobs was first considered by Browne and Yechiali [8] who assumed that the
processing times of jobs are non-decreasing, start time dependent linear functions.
They provided the optimal solution when the objective is to minimize the expected
makespan. Mosheiov [9] considered simple linear deterioration where jobs have a
fixed job-dependent growth rate but no basic processing time. He showed that most
commonly applied performance criteria, such as the makespan, the total flow time,
the total lateness, the sum of weighted completion times, the maximum lateness,
the maximum tardiness, and the number of tardy jobs, remain polynomial solvable.
Since then, Machine scheduling problems with time dependent processing times have
received increasing attention. Cheng, Ding and Lin [10] presented a survey of the
results on scheduling problems with time-dependent processing times. Pei et al. [11]
considered serial batching scheduling problem with deteriorating jobs in a two-stage
supply chain. The objective is to make decisions on job batching and batch sequenc-
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ing so as to minimize the makespan. They presented some useful properties and a
heuristic for solving it. Yin et al. [12] studied a new deterioration model, the objec-
tive is to find the optimal schedule such that makespan or total completion time is
minimized. They showed that both problems are solvable in polynomial time.

In this paper, we assume that the actual processing time of each job is a simple
linear increasing function of its starting time. The actual processing time of job j in
a schedule is given by pj = bjt, where t represents its starting time. Note that the
assumption t0 > 0 is made here to avoid the trivial case of t0 = 0 (when t0 = 0, the
completion time of each job will be 0). Each batch is to be assigned a delivery date
upon which all jobs within the batch are to be delivered to the customer together.
The delivery time of the batch is equal to the completion time of the last job in
the batch. There is also a batch delivery cost which is a non-negative function that
depends on the number of batches formed to process all the jobs. The problem is to
determine simultaneously the optimal number of batches, the assignment of jobs to
the batches and the job processing sequence so that the sum of batch delivery cost
and the scheduling cost is minimized.

This paper is organized as follows. In section 2, we describe our notation and
our scheme for the scheduling and batch delivery problems. In section 3, we provide
dynamic programming algorithms for the minimization of total scheduling cost and
delivery cost. For the total weighted completion time and delivery cost, we discuss
several basic properties. In section 4, we conclude the paper and suggest some topics
for future research.

2. Preliminaries

In this section, we describe our notation and assumptions. We begin with some
notation. The jobs are processed on a single machine. Let J = {1, 2, ..., n} denote
the set of jobs to be processed. For job j ∈ J , let pj denote its processing time,
wj denote its weight and dj denote its due date. Pre-emption is not allowed. The
actual processing time of job j in a schedule is given by pj = bjt, where t represents
its starting time. Jobs form a batch if all of these jobs are dispatched to a customer
together in a single delivery. The batch delivery date is equal to the completion time
of the last job in the batch. The nonnegative delivery cost C(y) is assumed to be a
non-decreasing function of the number of batches y. For any scheduleσ, we define:

• Cj(σ) is the time at which job j is delivered to its customer,

• Lj(σ) = Cj(σ)− dj is the lateness of job j,

• Uj(σ) = 1 if job j is late, while Uj(σ) = 0, if job j is delivered to its customer
by its due date,

• y(σ) is the number of batch deliveries and

• C(y) is the delivery cost function, which is a non-decreasing function of y.

The objective functions that we consider works with the delivery cost C(y) and
a scheduling cost. First we denote
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•
∑
Cj is the total completion time of the jobs,

•
∑
wjCj is the total weighted completion time of the jobs,

• Lmax = max
j∈J
{Lj} is the maximum lateness of the jobs and

•
∑
Uj is the total number of late jobs.

An example of the classification scheme is problem 1 |Pj = bjt, rj = t0|
∑
Ci +

C(y), which denotes the minimization of the total delivery cost and job completion
times on a single machine under simple linear deterioration.

We make use of the following results which are given without proof.

Lemma 1: In any of the scheduling problems that we consider, there is no idle time
between the jobs on the machine.

Lemma 2: For any optimal schedule, the sequence of jobs within each batch is
immaterial.

3. Main results

3.1. Sum of completion times

Lemma 3: For problem 1 |Pj = bjt, rj = t0|
∑
Ci + C(y), the cost is minimized

by sequencing the jobs according to non-decreasing order of deterioration rate bj
(SDR).

Proof: Consider an optimal schedule σ∗. Since all jobs within a delivery batch can
be sequenced in non-decreasing order of deterioration rate bj without affecting the
cost, we assume that non-decreasing order of bj for jobs within a batch holds for σ∗.
If σ∗ contains jobs that are not sequenced in non-decreasing order of bj , then we
must have a job j that is the last job to be processed in some batch B, and another
job i that is the first job to be processed in the next batch B′, where bj > bi.

Consider another schedule σ that is created by interchanging jobs j and i, and
forming delivery batches containing jobs B ∪ {i}\{j} and B′ ∪ {j}\{i} in σ, where
the first of these batches is delivered at the earlier time than batch B in σ∗ and the
second of these batches is delivered at the same time as batch B′ in σ∗. All the
other delivery batches are identical and delivered at the same time in σ as in σ∗. A
finite number of repetitions of this argument establishes that there exists an optimal
schedule in which the jobs are sequenced in SDR order.

As a result of Lemma 3, we assume that the jobs are indexed in SDR order, so
that b1 ≤ b2 ≤ . . . ≤ bn. In the following, we design the dynamic programming
algorithm for problem 1 |Pj = bjt, rj = t0|

∑
Ci + C(y). Then the total cost of the

partial schedule is a function value, while the number of deliveries and the index
of the current last job which is processed and delivered are state variables. More
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precisely, f(k, y) denotes the minimum total cost for processing and delivering jobs
1, 2, . . . , k using y deliveries, with the last delivery at time t0(1 + b1) . . . (1 + bk),
where 0 ≤ y ≤ k ≤ n. We propose the following dynamic programming algorithm
to solve the problem 1 |Pj = bjt, rj = t0|

∑
Ci + C(y).

Algorithm DP1

• Step 1: (Initialization) Number jobs in SDR order. Set f(0, 0) = 0.

• Step 2: (Recursion relation)

f(k, y) =

= min
0≤j<k

{f(j, y − 1) + (k − j)t0(1 + b1) . . . (1 + bk) + C(y)− C(y − 1)} .

If k = n, go to Step 3; otherwise set k = k + 1 and repeat Step 2.

• Step 3: (Optimal solution)

min
1≤y≤n

{f(n, y)}

and use backtracking to find the corresponding optimal schedule.

Theorem 1: Algorithm DP1 gives an optimal schedule for

1 |Pj = bjt, rj = t0|
∑

Ci + C(y)

in O(n3) time.

Proof: There are O(n2) states (k, y), and for each state the recurrence relation
requires O(n) time. Therefore, the overall time complexity of Algorithm DP1 is
O(n3).

3.2. Sum of weighted completion times

The NP-hardness of the problem 1 |Pj = bjt, rj = t0|
∑
wiCi + C(y) remains

open. In the following, we present several properties of the optimal schedule.

Property 1: There exists an optimal sequence for 1 |Pj = bjt, rj = t0|
∑
wiCi +

C(y) such that the delivery batch is sequenced in non-decreasing order of (FB −
1)/(wBFB), where wB =

∑
j∈B wj denotes the total weights of jobs in batch B,

FB =
∏

j∈B(1 + bj).

Proof: Consider an optimal schedule σ∗. If σ∗ contains batches that are not se-
quenced in non-increasing order of FB−1

wBFB
, then we must have a pair of batches Bi, Bj

such that batch Bi starting at time S is followed by batch Bj , and
FBi
−1

wBi
FBi

>
FBj
−1

wBj
FBj

.
So we have the objective value of batch Bi and Bj in σ∗, wBiS ·FBi +wBjS ·FBiFBj .
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Consider a new schedule σ which is obtained from σ∗ by interchanging batches
Bi and Bj . Under σ, we have wBj

S · FBj
+ wBi

S · FBi
FBj

. Then we obtain that

wBi
S · FBi

+ wBj
S · FBi

FBj
− (wBj

S · FBj
+ wBi

S · FBi
FBj

) =

= S
(
wBi

FBi

(
1− FBj

)
− wBj

FBj
(1− FBi

)
)
≥ 0 .

Since all other completion times are unchanged, this contradicts the optimality
of σ∗. We conclude that the non-decreasing order of FB − 1/(wBFB) is the optimal
schedule.

Property 2: For any two jobs i, j ∈ J to be scheduled consecutively, if bi > bj , wj >
wi and wibi > wjbj , there is an optimal schedule in which job j immediately precedes
job i.

Proof: Consider an optimal schedule σ∗. Obviously, all jobs within a delivery batch
can be sequenced in order from Property 2. Then there exists a pair of (i, j) in σ∗
such that job i is followed by j. A job i that is the last job to be processed in some
batch Bk, and another job j that is the first job to be processed in the next batch
Bk+1. Let S denotes the starting time of job i, W denotes the total weight in Bk

except job i, Dk+1 denotes the delivery time of Bk+1. Then∑
l∈Bk

wlCl = (wi +W )CBk
(σ∗) = (wi +W )S · (1 + bi) ,

wjCj(σ∗) = wjDk+1 .

Consider a new schedule σ that is created by interchanging jobs i and j, and form
delivery batches containing jobs B

′

k = Bk∪{j}\{i} and B
′

k+1 = Bk+1∪t{i}\{j}.
Thus, ∑

l∈B′
k

wlCl = (wj +W )CB
′
k
(σ) = (wj +W )S · (1 + bj) ,

wiCi(σ) = wiDk+1 .

It follows that ∑
l∈Bk

wlCl + wjCj(σ∗)−
∑
l∈B′

k

wlCl − wiCi(σ) =

= (wi +W )S · (1 + bi) + wjDk+1 − (wj +W )S · (1 + bj)− wiDk+1 =

=WS(bi − bj) + (Dk+1 − S) (wj − wi) + S (wibi − wjbj) ≥ 0 .

A finite number of repetitions of this argument establishes that there exists an
optimal schedule in which the jobs are sequenced by Property 2.
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3.3. Maximum lateness

Lemma 4: For problem 1 |Pj = bjt, rj = t0|Lmax+C(y), there exists an optimal
schedule in which the jobs are sequenced according to an earliest due date (EDD)
rule.

As a result of Lemma 4, we assume that the jobs are indexed in EDD order, so
that d1 ≤ d2 ≤ . . . ≤ dn. In the following, we design the dynamic programming
algorithm for problem 1 |Pj = bjt, rj = t0|Lmax + C(y), the maximum lateness of
the partial schedule is a function value, while the number of deliveries and the
index of the current last job which is processed and delivered are state variables.
More precisely, f(k, y) denotes the minimum value of the maximum lateness for
processing and delivering jobs 1, 2, . . . , k, using y deliveries, with the last delivery
at time t0(1 + b1) . . . (1 + bk), where 0 ≤ y ≤ k ≤ n. A formal statement of this
dynamic programming algorithm is as follows.

Algorithm DP2

• Step 1: (Initialization) Number jobs in EDD order. Set f(0, 0) = −∞.

• Step 2: (Recursion relation)

f(k, y) = min
0≤j<k

{max {t0(1 + b1) . . . (1 + bk)− dj+1, f(j, y − 1)}} .

If k = n, go to Step 3; otherwise set k = k + 1 and repeat Step 2.

• Step 3: (Optimal solution)

min
1≤y≤n

{f(n, y) + C(y)}

and use backtracking to find the corresponding optimal schedule.

Some remarks should be made about algorithm DP2. In step 2, the recurrence
relation selects a batch {j + 1, . . . , k} of jobs to be delivered at time t0(1+b1) . . . (1+
bk). From the EDD indexing of the jobs, job j + 1 has the smallest due date and
hence also the maximum lateness in this batch, the lateness of job j+1 is compared
with the maximum lateness of the jobs that have been scheduled earlier.

Theorem 2: Algorithm DP2 gives an optimal schedule for

1 |Pj = bjt, rj = t0|Lmax + C(y)

in O(n3) time.

Proof: There are O(n2) states (k, y), and for each state the recurrence relation
requires O(n) time. Therefore, the overall time complexity of Algorithm DP2 is
O(n3).
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3.4. Number of late jobs

Lemma 5: For problem 1 |Pj = bjt, rj = t0|
∑
Uj + C(y), there exists an optimal

schedule in which the on-time jobs are sequenced according to an earliest due date
(EDD) rule.

We assume that a job which would be late is neither product nor delivered. As
a result of Lemma 5, we assume that the on-time jobs are indexed in EDD order.
For problem 1 |Pj = bjt, rj = t0|

∑
Uj +C(y), we describe a dynamic programming

algorithm that either appends a job to some previous schedule of on-time jobs, or
specifies that this job is late. A subsequent decision is made about whether a batch
delivery is scheduled on completion of an appended on-time job. The completion
time of the current partial schedule is stored as the function value, more precisely,
we recursively compute value function f(k, y, u, j) which represents the minimum
completion time for processing the on-time jobs J1, J2, ..., Jj , ..., Jk. All processed
jobs J1, J2, ..., Jj−1 are delivered using y deliveries, Jj is the first job in the last
batch of the current partial schedule that is not yet scheduled for delivery, and the
total number of late jobs is u, where 0 ≤ y ≤ k ≤ n, 0 ≤ u ≤ n, and 0 ≤ j ≤ k.

Algorithm DP3

• Step 1: (Initialization) Number jobs in EDD order. Set f(k, y, u, j) = ∞,
if j > 0, f(k, y, u, j) > dj . Set f(0, 0, 0, 0) = 0.

• Step 2: (Recursion)

f(k, y, u, j) = min



f(k − 1, y, u− 1, j),

f(k − 1, y, u, j) + pk
if 0 < j < k and f(k − 1, y, u, j) + pk ≤ dj ,

min
j′∈J
{f(k − 1, y − 1, u, j′) + pk} if j = k,

where J = {j′ |1 ≤ j′ ≤ k − 1, f(k − 1, y − 1, u, j′) + pk ≤ dk}.
If k = n, go to Step 3; otherwise set k = k + 1 and repeat Step 2.

• Step 3: (Optimal solution)

min

{
u+ C(y)

∣∣∣∣ min1≤j≤n
{f(n, y, u, j)} , 0 ≤ u ≤ n, 0 ≤ y ≤ n

}
and use backtracking to find the corresponding optimal schedule.

Some remarks should be made about algorithm DP3. In step 2, the first term
of the minimization in the recurrence relation schedules job k to be late; the second
term schedules job k to be on time and belonging to the current batch of jobs,
provided that job k can be completed no later than time dj , job j can be dispatched
by its due date, no decision has yet been made about when to delivery the batch
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containing jobs j and k; the third term schedules a delivery for a batch containing
j′ as its first job, if j′ > 0, starts a new batch with job k which is scheduled to be
on time.

Theorem 3: Algorithm DP3 gives an optimal schedule for

1 |Pj = bjt, rj = t0|
∑

Uj + C(y)

in O(n4) time.

Proof: There are O(n4) states (k, y, u, j). The first and second terms in the re-
currence relation require constant time for each state, the third term requires O(n)
time for each of the O(n3) states for j = k. Therefore, the overall time complexity
of Algorithm DP3 is O(n4).

4. Conclusion

We have studied a single machine batch delivery problem under simple linear
deterioration, and presented several models for scheduling problems which include a
delivery cost. The aim is to find simultaneously a number of batches, a partition of
the jobs into batches and a job sequence so as to minimize the scheduling cost and
the delivery cost. We provided several algorithms for scheduling jobs on machine
and forming batches for delivery. Therefore, our work has practical implications for
the way in which scheduling and delivery decisions are made. For future research, it
would be interesting to focus on the scheduling problems with batch delivery costs
on parallel machines.
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